Hyperspectral imaging data correction and standardization, mobile applications
HSI – data correction and standardization, mobile applications

HSI area scan sensors

xicSpec HSI cameras
HSI – data correction and standardization, mobile applications

HSI sensor types from imec (used in XIMEA cameras)

filter layouts

line scan

Snapshot Mosaic

‘wedge’ design
100 bands: ~ 600 – 975 nm
150 bands: ~ 470 – 900 nm (new)

‘per-pixel’ design
4x4: ~ 470 – 630 nm
5x5: ~ 600 – 975 nm
HSI – data correction and standardization, mobile applications

HSI sensor types from imec (used in XIMEA cameras)

Filter layouts

Line scan

Snapshot Mosaic

'Wedge' design
100 bands: ~ 600 – 975 nm
150 bands: ~ 470 – 900 nm (new)

'Per-pixel' design
4x4: ~ 470 – 630 nm
5x5: ~ 600 – 975 nm

23.03.2016 XIMEA GmbH, Jürgen Hillmann
HSI – data correction and standardization, mobile applications

RAW image interpretation (calibration files)

Active area

Sensor width (2048 Px)

Sensor height (1088 Px)

Active area width

Active area height

Snapshot mosaic 5X5-NIR, 675-975nm

Start 1. 5X5 pattern

<filter_info version="2" layout="MOSAIC">
 <filter_area version="0">
 <offset_x>0</offset_x>
 <offset_y>3</offset_y>
 <width>2045</width>
 <height>1080</height>
 </filter_area>
</filter_info>

23.03.2016

XIMEA GmbH, Jürgen Hillmann
RAW image interpretation / snapshot mosaic

2 leaves on a stone

Snapshot mosaic 5X5-NIR, 675-975nm

Single 5X5 pattern, wavelength peaks [nm]

<table>
<thead>
<tr>
<th>900</th>
<th>909</th>
<th>892</th>
<th>882</th>
<th>683</th>
</tr>
</thead>
<tbody>
<tr>
<td>809</td>
<td>821</td>
<td>797</td>
<td>784</td>
<td>693</td>
</tr>
<tr>
<td>759</td>
<td>772</td>
<td>746</td>
<td>732</td>
<td>708</td>
</tr>
<tr>
<td>943</td>
<td>949</td>
<td>935</td>
<td>927</td>
<td>975</td>
</tr>
<tr>
<td>861</td>
<td>873</td>
<td>852</td>
<td>840</td>
<td>955</td>
</tr>
</tbody>
</table>

Spectrum (Raw-values)

675 nm

975 nm
The spatial resolution in case of a snapshot mosaic sensor is about
- SM 5X5: $\leq 409 \times 216$ px
- SM 4X4: $\leq 512 \times 272$ px
By Interpolation / demosaicing the native resolution of the active region can be calculated:
Sensor or object has to be moved. The spectral info for one position has to be collected:
When using standard VIS-NIR lenses, a significant “vignetting” may occur:

The “vignetting” has also an impact on the spectral curves:

- upper left corner
- upper right corner
- center
- lower left corner
- lower right corner

It is recommended to implement a white image / fixed pattern image correction for each band.
A significant “vignetting” may occur, depending on the lens and angle of the light:

It is recommended to implement a white image / fixed pattern image correction for each band.
The response curves have crosstalks with neighbors. Several curves have two peak wavelength (can be eliminated with long or short pass filters).
The response curves have crosstalks with neighbors. Several curves have two peak wavelength (can be eliminated with long or short pass filters).

Position of the crosstalks are at the peak wavelength of neighbors.
This effect can be corrected by a correction matrix.
Some response curves have two peak wavelength (cannot be eliminated with long or short pass filters).
Some response curves have two peak wavelength (cannot be eliminated with long or short pass filters).

The position of the second harmonic (peak wavelength) is not the peak wavelength of another band. This effect can be corrected by a correction matrix.
Data correction steps

simplified

HSI – data correction and standardization, mobile applications

1. Camera
2. RAW image
3. De-vignetting / fixed pattern correction, de-noising
4. De-vignetting / fixed pattern correction
5. Spectral correction
6. Corrected HSI cube

- Use calibration data:
 - Active area, offsets
 - Wavelength positions

Options:
- Interpolation
- Stitching

Snapshot mosaic: Line scan
The standard EMVA 1288 is to be expanded in order to describe hyperspectral imaging cameras. The first meeting took place on 03/03/2016 at Imec (Leuven, Belgium).
Mobile applications

For the operation of cameras a computer is needed to:

- control the camera(s)
- grab images
- data compression if needed
- send and store data
- process and analyze the data

For hyperspectral imaging the computer has to be powerful.
Mobile applications

XIMEA is developing a very compact (HSI) imaging and recording unit for mobile applications, e.g. installable in payload compartment of drones with

- massively parallel computational resources onboard
- storage on fast SD (UHS-II SDHC/SDXC) or M.2 PCIe x 4 SSD (1000-1200 MB/s)
- integrated IMU 9-axis
- interface to a drone control unit
- interface to connect GPS / wireless connection

This system is able to handle several cameras at once, e.g.

- 1 or 2 HSI cameras (looking downwards)
- visible light sensor (looking downwards)
- additional HSI-camera or spectrometer for ambient light measurement
Mobile applications

The system is designed to (e.g.)

- create the corrected hyperspectral imaging cube for the connected xiSpec cameras in realtime
- match spectral signatures against pre-learned signatures
- perform a data self clustering / principal component analysis (PCA)
- check whether differences against expected results occurs
- perform a multi-pass flight (other directions, different flight altitude for detailed data)
- optional data reduction (store only not expected info, e.g. possible plant diseases for a detailed postprocessing)
HSI – data correction and standardization, mobile applications

HW block diagram and interfaces

- HSI-A
 - LVDS->MIPI
 - MIPI[0...3]
- HSI-B
 - LVDS->MIPI
 - MIPI[4...7]
- VIS-A
 - LVDS->MIPI
 - MIPI[8...11]

Interfaces:
- I2C, SPI
- IMU
- USB3
- Ethernet
- CPU / GPU unit
- Carrier/Expansion board
- GPIO, SYNC
- UART UAV
- SD-A / M.2 SSD
- SD-B / M.2 SSD
- PWR
Thank you for your attention